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ABSTRACT
Drought and salt stress are considered to be major impediments in rice production systems. To understand the
genetics of tolerance to these abiotic stresses and develop drought/salt tolerant cultivars, genomic regions
influencing yield and its response to water deficit have to be identified. A method for predicting two drought
tolerant proteins viz.  dehydration-responsive element binding proteins (DREB) and ethylene responsive factor
(ERF) in the genome of indica rice has been described. The proposed method, ERFDREBSVMPRED, was
developed using support vector machine and a prediction accuracy of 89% for DREB and 81% for ERF was
achieved. The developed tool could predict DREB protein with 100% specificity at a 71% sensitivity rate and
ERF protein with 100% specificity at a 60% sensitivity rate.
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Rice is a staple food for a majority of the world’s
population mainly in Asia, Africa and India and, it
accounts for more than half of the calories consumed.
The population in these regions is expected to double
during the next 50 years. However, increase in rice
productivity is becoming more and more difficult
because of the effect of biotic/abiotic stresses like pests,
diseases, drought and salinity. There is an urgent need
to develop improved rice cultivars which are tolerant
to such stresses.

Intensive research has been undertaken in the
past few decades to identify drought and salt-responsive
mechanisms in plants, both from a biological and genetic
perspective. Transcription factors have been found to
play a significant role in regulating abiotic-stress
responsive gene expression (Sakuma et al., 2002).
Dehydration-responsive element-binding proteins
(DREBs) and ethylene-responsive element (ERE)
binding factors are two major subfamilies of the AP2/
ethylene-responsive element-binding protein family,
which are known to play decisive roles in the regulation
of abiotic- and biotic-stress responses.

DREB (proteins) can regulate the expression
of many stress-inducible genes in plants and hence plays
a critical role in improving abiotic stress tolerance of
plants by interacting with specific cis-acting element
named DRE/CRT, which is present in the promoter
region of various abiotic stress-related genes. Fine-
tuning of ethylene production is significant in
developmental processes and in plant responses to
stress. Ethylene response factors (ERFs) are plant
transcriptional regulators that mediate ethylene-
dependent gene expression via binding to the GCC motif
found in the promoter region of ethylene-regulated
genes. In an earlier work, we had identified 23 novel
signature sequences related to ERF family and 21
sequences related to DREB family by carrying out a
genome-wide analysis in Oryza sativa spp. indica
(Hemalatha et al., 2011).

Development of a genome-wide prediction tool
for ERF and DREB genes will significantly advance
rice genome annotation whereby, function can be
assigned for a potential gene(s) in the raw sequence(s).
In the recent years, adoption of discriminative machine
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learning techniques has given a boost to computational
gene prediction. Therefore, machine learning algorithms
were to predict ERF and DREB genes from whole
genomes. We propose a novel gene prediction tool,
named ERFDREBSVMPRED, for predicting ERF and
DREB genes. Models for creating this prediction tool
were developed using support vector machine (SVM).
Statistical accuracy and prediction of this tool was tested
using an independent data test and jackknife validation
was carried out for testing whether the data used was
biased or unbiased.

MATERIALS AND METHODS

We have utilized 23 ERF and 21 DREB sequences
belonging to indica rice, based on results obtained from
our earlier work (Hemalatha et al., 2011), and also
already annotated ERF and DREB sequences from
NCBI. Twenty ERF and 19 DREB genes were
randomly selected from the original set for creating the
positive dataset/training set and the remaining ERF and
DREB genes for the creation of negative dataset/test
set. For training and testing, we used independent data
test, where sequences in the training set and test set
are entirely different. For generating features, different
window lengths were generated with respect to all four
nucleotides (A, T, C and G) (Anwar et al., 2008). The
aim of generating window length is to transform the
variable length of nucleotide sequences to fixed length
feature vectors. This is an important and most crucial
step during classification using machine learning
techniques because they require fixed length patterns.
For generating the fixed length feature vectors, the
frequency of 64 features (3-mer), 256 features (4-mer),
1024 features (5-mer) and 4096 features (6-mer) in
the given dataset were obtained.

Support vector machine (SVM), a strong
machine learning technique for classification, was used
in this study. The SVM approach, which was originally
introduced by Vapnik and coworkers about two decades
ago, is based on the statistical and optimization theory
and has been successfully applied in a number of
classification and regression problems coworkers
(Cortes and Vapnik, 1995; Vapnik 1995). One big
advantage of SVM is the scantiness of the solution i.e.
it separates the hyperplane solely based on the support
vectors and not on the complete data set, thereby
making it less prone to over-fitting than other

classification methods such as the artificial neural
networks (Byvatov and Schneider, 2003).

In this study to implement SVM, SVM light

package (Joachims, 1999) has been used which allows
the user to choose a number of parameters and kernels
(e.g. linear, polynomial, radial basis function, and
sigmoid) or any pre-defined kernel with the assumption
that there exists a number of patterns Xi [ R

d(i_1, 2, . .
. . n) with corresponding target values yi [ {target
value}. Here the target value is either +1 (representing
an ERF/ DREB gene) or -1 (for non ERF/ DREB gene).
SVM maps the input vectors xi into higher dimensional
space with minimum error on the training set. The
decision function is implemented by SVM using the
Equation 1.

F(x) = sign (Σ yi α i K(xixj + b))................(1)

The value of α i is given by the task of quadratic
programming, thus maximizing the subject to 0d”α id”C
where C is the regulatory parameter that controls the
trade-off between the margin and the training error,
and b is the threshold for defining the hyperplane. The
selection of kernel is very important in SVM and is
analogous as choosing architecture in artificial neural
network. In this study, learning was carried out using
three kernels: linear, polynomial, and radial basis
function.

In sequence similarity search basic local
alignment search tool (BLAST) was used which allows
comparing a set of data against a database of sequences
and informs if the set of data matches any of the
sequences in the database (Altschul et al., 1990).
Similarity search is conducted by this tool for predicting
the function of a given sequence against a database of
annotated sequences. In this work, we have conducted
a 5-fold cross validation for predicting both ERF and
DREB genes, result of which are analyzed in the results
section.

In statistical prediction, three methods which
are often used to examine a predictor for its
effectiveness are independent dataset test, cross
validation test and jackknife test (Joachims, 1999). In
the independent dataset test, although none of the data
to be tested occurs in the training dataset used to train
the predictor, the selection of data for the testing dataset
could be quite arbitrary. For the cross validation test,
5-fold, 8-fold or 10-fold cross-validation is usually
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preferred. The problem with the cross validation is the
number of possible selections in dividing a target dataset
even for a very simple dataset (Burset and Guigo, 1996,
Altschul et al., 1990). Therefore, any result by the cross-
validation test represents one of many possible results
only, and cannot avoid the uncertainty either and hence
is used to estimate generalization error. In the jackknife
validation, each of the data in the benchmark dataset is
in turn singled out as a tested one and the predictor is
trained by the remaining ones. During the jackknifing
process, both the training dataset and testing dataset
are actually open, and a data will in turn move from
one to the other. This validation excludes the memory
effects during entire testing stage and hence the
outcome thus obtained is always unique for a given
benchmark dataset. Therefore, of the above three
examination methods, the jackknife test is considered
the most objective (Tukey,1958; Quenouille,1949) and
has been widely recognized and used by investigators
to examine the accuracy of various predictors (Chou
and Shen, 2008; Chen et al., 2008; Chen et al., 2009;
Chou and Shen, 2010a; Chou and Shen, 2010b).
Accordingly, the jackknife test has been used in this
study to evaluate our method.

To assess the performance of gene prediction
tool, the standard prediction measures by Burset and
Guigo were applied (Burset and Guigo, 1996).  The
following is a brief description of these parameters: (i)
The sensitivity or percent coverage of ERF/DREB gene
is the percentage of ERF/DREB gene correctly
predicted (ii) The specificity or percent coverage of
non- ERF/DREB gene is the percentage of non- ERF/
DREB gene correctly predicted. (iii) The accuracy is
the total number of predictions that were correct. (iv)
Precision is the proportion of the predicted positive
cases that were correct. These parameters can be
calculated using Equations 2–5,

Sensitivity = 100
FNTP

TP
×

+
 ..................(2)

Specificity = 100
TNFP

TN
×

+
 ..................(3)

Accuracy = 100
FNFPTNTP

TNTP
×

+++
+

 ......(4)

Precision =  ..................(5)

where TP, TN are truly or correctly predicted
positive (ERF/DREB) gene and negative (non- ERF/
DREB) gene, respectively (Fig. 1) and FP, FN are
falsely or wrongly predicted ERF/DREB and non ERF/
DREB genes, respectively.

Mathew Correlation Coefficient (MCC) is considered
to be the most robust parameter of any class prediction
method. An MCC equal to 1 is regarded as a perfect

Fig. 1. Criteria of classification of a prediction into true
positive (TP), true negative (TN), false positive (FP), or false
negative (FN). If a positive sample is predicted as positive
then it is classified under true positive prediction and vice
versa for true negative prediction. But if a positive sample is
predicted as negative class and vice versa then it is classified
as false negative and false positive prediction, respectively.

prediction where as 0 is for a completely random
prediction. The value of MCC ranges from -1 to 1, and
a positive MCC value stands for better prediction
performance.  MCC can be calculated using the
Equation 6.

MCC= ..........(6)

The prediction performance of
ERFDREBSVMPRED for ERF and DREB using
independent data test are graphically represented using
ROC curves which are used for intuitively visualizing
prediction performance. ROC curves plots the true
positive rate (TPR) as function of the false positive
rate (FPR) which is equal to (1-specificity). The area
under the ROC curve is the average sensitivity over all
possible specificity values which can be used as a
measure of prediction performance at various threshold
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values. ROC curves of random predictors will be around
the diagonal line from bottom left to top right of the
graph with scores around 0.5, while a perfect predictor
will produce a curve along the left and top boundary of
the square and will receive  a value of one.

RESULTS AND DISCUSSION

BLAST which conducts similarity search is one of the
common practices for predicting the function of a new
sequence against a data base of well annotated
sequences. In this study we used BLAST for predicting
ERF/DREB genes using 5-fold cross-validation where
four sets of ERF/DREB and non- ERF/DREB proteins
were used to create a BLAST data base, and ERF/
DREB genes of the corresponding test set were
searched against this BLAST data base (Table 1,
Table 2). This process was repeated five times so that
BLAST search was performed once for each ERF/

Table 1. Result of BLAST search on data set of ERF genes
used for ERFDREBSVMPRED

Data set No. of Summary of BLAST hits Accuracy
ERF No. of  hit Total hits
genes

Test1 5 5 0 0
Test2 5 3 2 40%
Test3 5 4 1 20%
Test4 4 5 0 0
Test5 4 5 1 20%
Average/Total 23 22 3 13%

Table 2. Result of BLAST search on data set of DREB genes
used for ERFDREBSVMPRED

Data set No. of Summary of BLAST hits Accuracy
DREB No. of  hit Total hits
genes

Test1 4 4 0 0
Test2 4 4 0 0
Test3 4 4 0 0
Test4 4 4 0 0
Test5 5 5 0 0
Average/Total 21 21 0 0

DREB gene. This demonstrates that BLAST alone
cannot predict all ERF/DREB genes and hence is not
a good method for the annotation of ERF/DREB genes.

The prediction accuracy of the SVM based
classifier was assessed by two distinct approaches:
cross-validation test and the independent data set test.

We carried out independent data test with different
kernels and parameters of support vector machine
(SVM) with window length varying from 3 to 6. Testing
of SVM on independent data test for ERF gene resulted
in the achievement of 81% accuracy with an MCC
value of 0.67 using linear and polynomial kernel with
window length 3 where sensitivity is 60% and specificity
is 100%. On carrying out independent data test for
DREB gene, we obtained an accuracy of 89% with an
MCC value of 0.78 using polynomial kernel with window
length 3 and having sensitivity and specificity as 71%

Table 3. Classification accuracy of three kernels using SVMlight with independent data set (ERF)

Algorithm Window length   Independent data test     Jackknife validation
Sn Sp Acc Prec MCC Sn Sp Acc Prec MCC

Linear 3 60 100 81 100 0.67 100 100 100 100 100
4 20 100 63 100 0.35 100 100 100 100 100
5 40 100 72 100 0.52 97 100 98 100 98
6 40 100 72 100 0.52 100 100 100 100 100

Polynomial 3 60 100 81 100 0.67 100 100 100 100 100
4 20 100 63 100 0.35 100 100 100 100 100
5 20 100 63 100 0.35 100 100 100 100 100
6 0 100 55 0 0 100 100 100 100 100

RBF 3 100 0 45 45 0 100 100 100 100 100
4 100 0 45 45 0 100 100 100 100 100
5 100 0 45 45 0 100 100 100 100 100
6 100 0 45 45 0 100 100 100 100 100
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and 100%, respectively (Table 3, Table 4). Hence it
can be concluded that for independent data test window
length 3 is optimal with polynomial kernel as the
classifier. 8-fold and 10-fold cross validation was carried
out on the same dataset for window length varying from
3 to 6. It shows average 8-fold and 10-fold cross
validation result for DREB gene with polynomial kernel
and a window length of 5 as the best with accuracy of

Table 4. Classification accuracy of three kernels using SVMlight with independent data set (DREB)

Algorithm Window length   Independent data test     Jackknife validation
Sn Sp Acc Prec MCC Sn Sp Acc Prec MCC

Linear 3 71 92 84 83 0.65 100 100 100 100 100
4 71 58 63 50 0.28 100 100 100 100 100
5 57 58 58 44 0.14 97 100 98 100 98
6 57 58 58 44 0.14 100 100 100 100 100

Polynomial 3 71 100 89 100 0.78 100 100 100 100 100
4 71 58 63 50 0.28 100 100 100 100 100
5 42 58 52 38 0.01 100 100 100 100 100
6 0 100 63 0 0 100 100 100 100 100

RBF 3 100 0 37 36 0 100 100 100 100 100
4 100 0 36 36 0 100 100 100 100 100
5 100 0 36 36 0 100 100 100 100 100
6 100 0 36 36 0 100 100 100 100 100

84.5%. Similarly, average cross validation result of 8-
fold and 10-fold for ERF gene shows that polynomial
kernel and a window length of 4 as the best result with
accuracy of 66.5% (Tables 5, 6). The performance
comparison of both the approach (Fig. 2 and 3).

On performing jack-knife validation for the
datasets used for cross validation and independent data
tests for ERF and DREB genes; it was observed that
all values were greater than 95%. These results shows
that data used for the training are totally unbiased.

A plot of ROC curve is a measure that depicts
the relationship between sensitivity and specificity of a

given class. To evaluate the best classifier for ERF
and DREB, we plotted ROC curves for both proteins
on the independent test performance. Figure 4 shows
the ROC curve drawn for DREB protein for the best
classifier’s performance which was obtained for

Table 5.  Prediction performance of ERFDREBSVMPRED on ERF proteins with different kernels using cross validation

Algorithm Window Length            8- fold validation       10- fold validation Avg Acc
Sn Sp Acc Prec MCC Sn Sp Acc Prec MCC

Linear 3 70 30 54 57 0 81 50 65 71 0.3 59.5
4 75 54 65 59 0.3 67 56 62 71 0.26 63.5
5 77 65 71 73 0.4 79 56 69 73 0.38 70
6 71 56 65 72 0.26 83 69 76 78 0.56 70.5

Polynomial 3 75 56 67 67 0.3 75 50 60 58 0.2 63.5
4 67 46 58 55 0.1 71 81 75 88 0.57 66.5
5 44 77 59 58 0.2 48 88 66 75 0.38 62.5
6 0 91 40 0 -0.08 0 94 44 0 -0.07 42

RBF 3 100 0 60 60 0 100 12 60 58 0.1 60
4 95 0 58 59 -0.5 100 12 61 59 0.1 59.5
5 100 31 55 54 0.04 94 12 55 55 0.08 55
6 100 0 56 56 0 100 0 51 51 0 53.5

MCC - Mathew correlation co-efficient, Sn - Sensitivity Percentage, Sp-Specificity, ACC - Accuracy precision
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Table 6.  Prediction performance of ERFDREBSVMPRED on DREB proteins with different kernels using cross validation

Algorithm Window Length            8- fold validation       10- fold validation Avg Acc
Sn Sp Acc Prec MCC Sn Sp Acc Prec MCC

Linear 3 100 0 56 56 0 62 31 48 49 -0.06 52
4 48 42 45 43 -0.07 78 56 68 64 0.35 56.5
5 67 52 59 68 0.2 81 88 84 88 0.69 71.5
6 85 50 69 71 0.38 69 63 64 68 0.36 66.5

Polynomial 3 100 0 56 56 0 62 50 56 50 0.13 56
4 52 39 47 42 -0.06 59 69 67 55 0.3 57
5 63 75 80 48 0.44 100 83 89 81 0.82 84.5
6 0 79 38 0 -0.21 0 75 40 0 -0.27 39

RBF 3 100 0 56 56 0 100 0 51 51 0 53.5
4 100 12 58 56 0.15 100 0 53 53 0 55.5
5 100 19 61 59 0.22 100 19 63 59 0.22 62
6 100 12 61 60 0.15 100 0 52 52 0 56.5

Fig. 4.  ROC curve for ERFDREBSVMPRED for DREB protein
validated using independent data test

Fig. 3. Performance comparison of DREB proteins with
respect to cross validation and independent data testFig. 2. Performance comparison of ERF proteins with

respect to cross validation and independent data test

Fig. 5. ROC curve for ERFDREBSVMPRED for ERF protein
validated using independent data test
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polynomial kernel. The ROC curve drawn for an ERF
protein which obtained an accuracy of 81% for
polynomial kernel is depicted in the figure 5. Each point
on the curve is plotted based on different threshold
values. The ROC curve for a perfect classifier results
in a straight line up to the top left corner and then straight
to the top right corner. Accordingly for both DREB
and ERF, the ROC depicted “good classification” with
area under the curve (AUC) 0.75 and 0.714
respectively. The AUC specifies the probability that
the decision function assigns a higher value to the
positive than to the negative sample when one positive
and a negative sample are drawn at random.

Thus, in this study, a novel and systematic
method has been described for developing a tool for
prediction of ERF and DREB genes using support vector
machine. The performance of the developed tool was
validated using various statistical parameters and it was
found to be highly satisfactory. The method can be
utilized for automatic annotation of genomic data.
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